CP Chemistry Periodic Table Trends Lab

Pick one person to work with you on this lab. Hand in one copy of each graph along with one copy of the summary sheet with both of your names on it.

Graphing:

- 1. Prepare four graphs using Excel and the data in your lab materials.
 - a. Atomic Number vs. Atomic Mass
 - b. Atomic Number vs. Electronegativity
 - c. Atomic Number vs. First Ionization Energy
 - d. Atomic Number vs. Atomic Radius
- 2. Place atomic numbers on the x-axis and the other property on the y-axis.
- 3. Use the chart wizard to create your graphs
 - a. Use XY Scatter with data points connected by a smooth line
 - b. Title each graph: "Atomic Number vs. _____" Include your <u>names</u> in the title!
 - c. Correctly label the X & Y axis.
 - d. Delete the legend and grid lines.
 - e. Add data labels to the X values.
 - f. Print one copy of each of the four graphs. You may cut and paste them to save paper (no more than two graphs per side).

Analysis:

- 1. On each graph <u>circle</u> the data points for **elements in one period**.
- 2. On each graph <u>box</u> the data points for **one family of metals**.
- 3. On each graph triangle the data points for one family of nonmetals.
- 4. Use your graphs to complete the <u>Summary Sheet</u>

For Grading:

- 1. Hand in one completed copy (per lab group) of the Summary Sheet!
- 2. Attach all graphs to the back of the summary sheet, marked as indicated!
- 3. Talking with others about possible answers is permissible. Do not copy each others answers verbatim!

CHEM DATA							
		atamia	R/ a látim a	-1 - m - i4	Electro-	First lon.	Atomic Radius
Symbol	atomic #	atomic mass	Melting Point, (°C)	density (g/mL)	negativi ty	Energy (kJ/mol)	(pm)
H	" 1	1.008	-259.1	0.00007	ری 2.1	1312	37
He	2	4.003		0.00018		2377	32
Li	3	6.941	180.5	0.54300		520	134
Be	4	9.012		1.85000		899	90
В	5	10.81	2079	2.34000		801	82
č	6	12.01	3367	2.25000		1086	77
N	7	14.01	-209.9	0.00125		1420	75
0	8	15.99		0.00143		1314	73
F	9	18.99		0.00170		1681	72
Ne	10	20.18		0.00090		2088	71
Na	11	22.99	97.8	0.97100	0.9	495	154
Mg	12	24,31	649	1.74000	1.2	735	130
A	13	26.98	660	2.70000	1.5	580	118
Si	14	28.09	1410	2.33000	1.8	780	111
P	15	30,97	44.1	1.82000	2.1	1060	106
S	16	32.07	112.8	2.07000		1005	102
CI	17	35.45	-101	0.00321	3	1255	99
Ar	18	39.95		0.00178		1527	97
К	19	39.1	63.25	0.86000		419	196
Ca	20	40.08		1.55000		590	174
Ga	31	69.72		5.90000		579	126
Ge	32	72,59		5.32000		762	122
As	33	74.92		5.73000		947	119
Se	34	78.96		4.79000		941	116
Br	35	79.9		3.12000		1140	114
Kr	36	83.8		0.00374		1356	110
Rb	37	85.47		1.53000		409	211
Sr	38	87.62		2.54000		550	192
ln	49	114.82		7.31000		558	144
Sn	50	118.69		7.31000		709	141
Sb	51	121.75		6.69000		834	138
Te	52	127.6		6.24000		869	135
1	53	126.9		4.93000		1008	133
Xe	54	131.3	-111.8	0.00589		1176	131

Periodic Table Trends Lab

Names _____

Period _____

Electronegativity

- 1. What is electronegativity?
- 2. This trend ______ across a period from left to right. Explain the reason for this tendency.
- 3. This trend ______ in a family from top to bottom. Explain the reason for this tendency.

Ionization Energy

- 1. What is ionization energy?
- 2. This trend ______ across a period from left to right. Explain the reason for this tendency.

3. This trend ______ in a family from top to bottom. Explain the reason for this tendency.

Atomic Mass

- 1. What is atomic mass?
- 2. This trend ______ across a period from left to right. Explain the reason for this tendency.

3. This trend ______ in a family from top to bottom. Explain the reason for this tendency.

Atomic Radius

- 1. What is atomic radius?
- 2. This trend ______ across a period from left to right. Explain the reason for this tendency.

3. This trend ______ in a family from top to bottom. Explain the reason for this tendency.